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Abstract—An approximate statically admissible solution of the elastoplastic interface is described
for the planc strain problem of a pressurized circular hole in a plane subject to a non-hydrostatic
stress at infinity (Problem of Galin). In contrast to the solution of Galin (Prikl. Mat. Mekh. 10,
365-386 (1946)) which applies for the case of a frictionless Tresca material, it is assumed that the
material is characterized by a cohesive-frictional yicld strength. The solution of the elastoplastic
interface is obtained in the form of a truncated series expansion, for cases where the material has
yiclded all around the hole. The paper discusses the limiting conditions for which the solution is
applicable, and the validity of the solution in regard to an elastoplastic problem.

1. INTRODUCTION

A statically admissible solution of the elastoplastic interface, for the plane strain problem
of a pressurized circular hole in an infinite medium subject to a non-hydrostatic stress at
infinity, was derived by Galin[1-3] for the case of a Tresca material. The elliptic interface
obtained by Galin pertains to cases where the material has yielded all around the hole
and for stress boundary conditions for which the problem is statically determinate. The
originality of Galin’s analysis was to reduce the problem of finding the elastoplastic
interface to a problem of mapping, by making use of the complex variable method[4] for
solving plane elastic boundary value problems. The equivalent problem in plane stress was
solved by Cherepanov[5].

The object of this paper is to extend Galin’s solution for a material characterized by
a Mohr-Coulomb yield strength. Both cases of passive and activet limit equilibrium in
the yield zone are considered which correspond to cases where the hole is respectively
expanding and contracting. The paper first describes a new approach for solving the
elastoplastic interface, that leads to the formulation of a functional equation for the
mapping function. It is then shown how to solve the functional equation approximately
for the general case of a Mohr—Coulomb material, by seeking a solution to the mapping
function in the form of a truncated scries expansion. Finally, the limits of validity of the
statical solution are discussed.

2. PROBLEM STATEMENT AND ASSUMPTIONS

An infinite plane with a circular hole of radius a is subject, under conditions of plane
strain, to a uniform stress 1° at infinity and to a pressure p at the hole boundary (Fig. 1).
The principal directions of the stress tensor t° are parallel to the axes of the Cartesian
coordinates system defined with its origin at the center of the hole. It is assumed that
19, < 12, < O(tension taken positive). The plane has homogeneous and isotropic properties.
The material is elastic perfectly plastic and is characterized by the linear Mohr-Coulomb
yield criterion

F:=Kyty —13—-9=0 1)
1 The terms active and passive are used in soil mechanics, within the context of the classical earth pressure
theories of Coulomb and Rankine, to describe the loads acting on a retaining wall. There is active pressure when

the backfill is pushing on the wall; passive pressure when the soil resists movement of the wall towards it.
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Fig. 1. Problem definition.

where K, is the passive coefficient, function of the friction angle ® [K, = (1 + sin®)/
(1 — sin®], and q is the unconfined compressive strength (g = 2¢,/K,, where c is cohesion).
Poisson’s ratio v of the material is restricted to obey the inequality
1
(K, +1)

2

vz

which, as proven in Appendix A, represents a sufficient condition for the out-of-plane stress
1, to be the strict intermediate principal stress, in regions of plastic flow. (This restriction
reduces to the incompressibility condition for a cohesive frictionless material.) Under
inequality (2), the Mohr-Coulomb criterion can always be expressed in terms of the plane
components of the stress tensor; in which case a useful form of the criterion is in terms of
P and §, the mean pressure and the stress deviatoric invariants in the plane of the
deformation

S=38(P) (3)
where
(txx + ) Tyy — Txx ¥ 2
P= -——212 ; S= L—z + Ty 4)

and §, is the yield limit, function of P, of the invariant §

_K—1f q )
SEk I\ TR -1/ ©)

The objective of this paper is to derive a statical solution of the elastoplastic interface,
for combinations of t° and p for which the hole is completely surrounded by a plastic
zone. (The formation of the yield zone is assumed to be the result of monotonic loading.)
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The construction of the statical solution is based on two a priori hypotheses.

(1) There is no elastic unloading taking place in regions having experienced plastic
deformation.

(2) The problem remains statically determinate, since the inception of the first plastic
zone.

These assumptions impose various restrictions on the parameters controlling the problem,
that will be examined in Section 6.

3. SOLUTION OF THE INTERFACE AS A PROBLEM OF MAPPING

By postulating no elastic unloading in regions of plastic flow, in addition to statical
determinacy, a statical solution of the interface, corresponding to an internal pressure p in
the hole and a mean pressure P° and a stress deviatoric S° at infinity, can be constructed
while ignoring the sequence of loading. These two a priori assumptions imply that the
plastic zone develops adjacent to the circular boundary and that the plastic stress field is
completely determined by the internal pressure p[6]. The location of the elastoplastic
interface and the elastic stress field can then be computed from the stress condition at
infinity and the requirement of stress continuity at the interface[7].

3.1. Plastic stress field

The postulates of statical determinacy and no elastic unloading imply that the stress
field in the plastic zone is axisymmetric. Two solutions exist, passive and active,
corresponding respectively to t,4 > 1,, and 144 < 7,,. In the elastoplastic problem with a
hydrostatic stress at infinity (S = 0), the passive solution applies for cases where p > P°,
the active one for p < P° For both modes of failure, the plastic stress field is given by the

general formula[8,9].
q a_\(r 5"1
T"=_p.__l_<p+ - 1><5

-1
=9 4 r
T K, <1 K(” = 1)(11)K

1,4=0 (6)

where (r, @) are the cylindrical coordinates of a point of the plastic region, and where K
is to be replaced by K, for an active yield zone and by K, = 1/K|, for a passive one.

3.2. Stresses at the elastoplastic interface

Let S designate the infinite elastic region bounded by the unknown interface I". The
complex variable Z = x + iy is defined in the physical plane (also referred to as the Z-
plane). Consider then the mapping function

Z = uff) 0

which maps conformally -, the region exterior to the unit circlg y centered at the origin
of a reference {-plane, onto S~ such that there is correspondence between the point at
infinity and the positive real axis in the two regions (Fig,. 2). Since the coordinate axes are
parallel to the principal directions of the stress at infinity, the elastoplastic interface is
necessarily symmetric with respect to the x- and y-coordinate axes. It follows, from these
symmetries, and the particular choice of the mapping function that

ol = —o(-{) and ({) = a()) 8)
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where @({) stands for w({), following Muskhelishvili’s notation[4]. Near the point at
infinity, w({) behaves as R, where R is a real coefficient.

Let r.(g), where o is a point on y, designate the distance between the origin of the Z-
plane to a point Z. = w(o) on the interface I’

ri{o) = [w(o)w(o)]' . 9)

Using the plastic stress solution, eqns (6) and (9), and coordinates transformation formula,
the plane Cartesian components of the stress tensor along I' are then given by

1 __ 9 K+l q rio) 7!
et =TT (p+Kp—l)[a:|

1 Y g \[rio) ] oo
E(ryy—t,,)+lr,,— - <p+ K, - l>[ p } m. (10)

The above equations can be rewritten using two new quantities R, and S? respectively
defined as

1HK-1)

0 q
a_| 2 ey )
Tl K+1 L4
PTK, —1
K,—1 q
0._ 0y — *p 0 i
S?:= 5,(P°) KP+1<P +1<,,—1> (12)

Here R, represents the radius of the elastoplastic interface, normalized with respect to q,
in the particular case of a hydrostatic stress at infinity[8,9] and S} is the yield limit of the
stress deviatoric invariant at infinity. Using eqns (11) and (12), eqn (10} becomes

1 q K,+1 o.k-1
= = i f.
2(Ixx + Tyy) Kp _ ] Kp - 1 Sl (U)
l(1’ —- T ) it = -‘FSO(D(G)r‘K'l(a) (13)
2 »y XX, Xy 1 (f)(U) .
where
r«{o}) w(o)
fo) = ; = —",
() =7x  H0=Sp

Fig. 2. Conformal mapping.
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In eqn (13), the upper and lower signs refer to the active (K = K,) and passive (K = K,)
modes, respectively. (This convention will apply to all equations with a double sign.) It
can be seen from eqns (13), that the stresses at the elastoplastic interface becomes
independent of the internal pressure p with the transformation Z' = Z/aR,. The Z'-plane
is defined as the unit plane.

3.3. Continuity of the stresses at the elastoplastic interface
The stresses in the elastic region S~ can be expressed in terms of the mapping function
w({) and two functions ¢;({) and ¢,({) analytic in =~ [4]

Y=t +ity = =57+ L0 14,0 (14

The above expressions are slightly different from the usual Kolossof formulae. Functions
¢,(0) and y,(0) are actually associated to the stress difference t! = ¢ — % they are analytic
in S~ and O({~?) near the point at infinity. The behavior at infinity can be deduced from
the conditions at infinity on the stress, and the additional assumption that the rigid body
rotation is zero at infinity.

Continuity of the stresses along I is achieved by equating the right-hand members of
eqns (13) and (14), with { in eqns (14) set to ¢

$1(0) + B0 = S 21— #7a))
-
)

wa) 0 T O
o )¢(0)+¢1(6) S°F S

&) a9

1
o) (0).

It follows from the above equations that the two analytic functions ¢,({) and ¥ ,({) can
naturally be normalized by S?

é1(0) + $,(0) = —L—[l X~ 1(0)]

) 5, T P9
,(0)431(0)+ ¥,(0) (b( )f" (0) (16)
where
8.0 = S‘f,o, b =40
and
SO
m= S-? (17

The positive parameter m is defined as the obliquity of the stress at infinity. In the stress
invariant space (P°, S°), stress states characterized by the same obliquity m lay on a line
which passes through the intersection of the Mohr-Coulomb envelope with the hydrostatic
axis §% = 0.



1440 E. DETOURNAY

A similar procedure for the case of a Tresca material (® = 0) leads to

3(0) + 16 = 1 ¥ In [A0)4c))
b1+ o) = m ¥ ""—;‘7; (19)

In this case, S? degenerates into ¢, the cohesion.

Equations (16) express, respectively, continuity of the mean pressure and the stress
deviatoric across the elastoplastic interface I. Mathematically, they represent boundary
conditions on y to be satisfied by the three unknown analytic functions &), ¢,({), and ¥/,({)
These boundary conditions, together with the conditions at infinity for these functions, are
in principle sufficient to determine the position of the interface I' and the elastic stress field.

4. FUNCTIONAL EQUATION FOR THE MAPPING FUNCTION

Equations for solving the mapping function dX{) are derived in the following, together
with general expressions for the two analytic functions ¢,({) and ¢ ,({). This derivation relies
on the Schwarz’s reflection principle and on Laurent’s decomposition principle (e.g. Ref.
[10]). For this particular case, these two principles can be stated as follows.

(1) Schwarz's reflection. 1f F({) is analytic in Z; (p > p,), then F({™') is analytic in
I} (p < pr ') FQ) and F({™!) are said to be associated functions.

(2) Laurent’s decomposition. If G({) is analytic in the ring Q (p, < p < p;}), then G({)
can be decomposed, inside Q, as the sum of two functions G,({), analytic in £}, and G,({)
analytic in £ and vanishing at infinity.

Consider eqn (16),, which expresses continuity of the mean pressure across . Provided that
I is smooth, X~ !(¢) is continued analytically on both sides of y by the function X~ *({)
defined as

= [~ HI* D2, (19)

Let p, designate the modulus of the zero or singularity of d({), which is the farthest away
from the origin of the {-plane (p, < 1). Since the function £X~!({) is analytic inside the ring
Q (p; <p<prh), it follows from Laurent’s decomposition principle that #X~({) can be
decomposed into two analytic functions. However, because of the properties, eqns (8), of
ax{) and the definition of #X~!({), this decomposition takes the particularly simpie form

PN =dCY) + do + d(0) (20)

where d,, is a real coefficient and d({) a function analytic in £ and vanishing at infinity.
Using eqn (20), the first boundary condition, eqn (16), can be rewritten as

- K 1 K 1 K 1-—
$1(0) 4 32T do) = 20 ) - 5 + 2T d0) @y
or
F~ (@)= F*(0) (22)

where F (o) is the boundary value on y of F™({) analytic in £~ and F*(¢) the boundary
value of the function F*({) analyticin £* (p < 1)

Fr 0= $,0) + 22 d0)
-

FrQ)i= o = dg = $07) — R de) 23)
P P
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Consequently, the functions F*({) and F~({) are an analytic continuation of each other
across the unit circle y. But according to Liouville’s theorem, F*({) and F ~({) are identically
equal to a constant, which is zero because of the vanishing of F~({) at infinity. It follows
therefore that

610 =~ THA0. Cexi en

which indicates that @,({) is actually analytic in £;. Using the concept of associated
functions, F*({) can be written as

Fr@Q)= —L—(l—do)-F €. (25)

P

Since F*({) = F~({~!) = 0, expression (25) shows that
dy = 1. (26)

Equation (26) represents a scalar constraint that must be satisfied by the mapping function
({).

Consider next the second boundary condition, eqn (16), which expresses continuity of
the deviatoric stress across the elastoplastic interface. Taking into account eqn (24), and after
multiplication by &'(c), this boundary condition becomes

_ Kot 155 d0) + d0n(0) = (o) T (0 2D ), @7)
K,—1 (o)

The first term on the left-hand side of eqn (27) is the value on the unit circle y of the
function g({)

80 = — 2T ) o8)

P

which is analytic in Q (note that &({~!) is analytic in I, d'({) in Z]). Using Laurent’s
decomposition, g({) can be decomposed inside €, into g,({) analytic in Z{, and g,({) analytic
in £, and vanishing at infinity

g() = &) + £2(0). (29)

The second term on the left-hand side of eqn (27) is the boundary value of &' ({,(0)
which is analytic in ] and is O({~?) near the point at infinity.

The first term on the right-hand side of eqn (27) corresponds to md'({) which is
analytic in Z7, but equal to mA at infinity where 4 is defined as R/aR,. The second term
is the value on y of the function k() analytic in Q

()
ax?)

and thus h({) can be equated in Q to the sum of h,({) and h,({), h,({) analytic in £ and
h,({) analytic in | and vanishing at infinity.

In light of the decomposition, continuity of the stress deviatoric, eqn (27), across I’
can be rewritten as

Q)= &) —2=—F1(() (30)

G~ (0) = G*(o) (31

SAS 2Z/12-E
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where G (o) is the boundary value of G™({) analytic in £~ and vanishing at infinity and
G*{0) is a function analytic in L7

&', )+ mi + g,(0) + hy(0)
G*(C) = ~g,(0) F hy(l) + mA. (32)

Then pursuing the argument developed previously, it is found that

¥ (0 = [md' Q) — md — g0 F hao(0YD' Q) (€Z™ +v (33)
G =0, [eZ}. (34)

Equation (33) provides a means of calculating y,({) once the mapping function dX{) has
been determined. Equation (34) represents a functional constraint for é&X({).

The mapping function &{) can now be determined from eqn (26) and from the functional
eqn (34). The procedure is complicated, however, because Laurent’s decomposition of
the functions g({), h({), and d({) can, in general, only be accomplished by means of Laurent’s
series representations of these functions.

The next section describes a method of obtaining an estimate &*™({) to &({), by solving
eqn (34) approximately. It should be noted, however, that for the case of a Tresca material,
the procedure described above provides a direct and simple means of calculating aX()
{Galin’s solution), and the analytic function ¢,({) and ¥,({)

F*¢)y=0: A=1

G*(D) =0: axz;)=c:r%

FFO=0 &@0=5n2 “”20 (35)
Q=0 Ju="21
m3E{

It is emphasized that the approach described in this paper is different from the method of
Galin[1], and Cherepanov[5]. While Galin’s approach makes use of the biharmonicity of
the plastic stress function in the particular case of a Tresca material and plane strain (only
a handful of plastic states are characterized by a biharmonic stress function), the method
of Cherepanov relies, among other things, on explicitly solving the second boundary
condition, eqn (16), for Zb—(}_).

5. APPROXIMATE SOLUTION OF THE ELASTOPLASTIC INTERFACE

An approximate solution of the elastoplastic interface is now sought in the form of a
truncated series expansion of &({). Laurent’s series expansion of dX{) with respect to { = 0,
for { large enough, is

o) = 14(1 + 3 cb) (36)

i=1

where all the coefficients m,; are real, like 4. The particular form of the series expansion
(36) can be deduced from the properties, eqns (8), of the mapping function. The series

representation of &({) is valid for any p > p., p.(< 1) being the modulus of the singularity
of d({) closest to y.
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One now seeks to calculate the approximation &™({) to d({)

nom™
() = w’c(x + 3 i) (37)

=N

by determining the coefficients A, m$), j = 1,n as approximation of “order n” of the
cocfficients 4, and m,;, j = 1,n of the series (36). The coefficients of @"™({) are calculated
using constraint (26) and by satisfying approximately the functional equation G*({) = 0.

5.1. Non-linear system of equations

Since G*({) is a function analytic in £, it can be expanded into a Taylor series
around { = 0. Due to the symmetries of the problem, this series takes the particular form

6= § Gig¥  lex; (38)

with all the coefficients G,; real. The functional constraint G*({) = 0 is satisfied approxi-
mately by imposing that the n first coefficients of series (38) are zero

G3;=0, j=0n—1 (39)

Together with eqn (26), the n equations (39) constitute a system of (n + 1) equations in the
unknown A", m§), j = 1,n. Actually, as shown in Appendix B, this system can simply be
decomposed into one equation giving 2 in terms of m§), j = 1,n

A" = hYmP m{, ..., m§; K, m) (40)
and into n non-linear equations in the unknowns m§}, j = 1,n
KS)mS, m, ... m§u K,m)=0;  j=1,n (41)

The explicit form of eqns (40) and (41) is derived in Appendix B.

Since K and m are the only parameters present in the non-linear systems of eqn (41),
the shape of the elastoplastic interface depends only upon the obliquity m of the stress at
infinity, the friction angle of the material, and the mode of failure (passive or active).

5.2. First-order approximation of the interface

Successful numerical resolution of the non-linear system, eqn (41), relies on a “good”
initial guess of the roots m¥), j = 1,n. These initial values are obtained by assuming the
interface to be elliptic, i.e. by assigning a zero value to the initial guess of m{®, m{®,..., and
by calculating a first-order approximation of m{’. This first-order approximation is
calculated by linearizing h{" (m’; K,m) = 0, thereby yielding (see Appendix B)

2
K+1

R

my; =+ m. 42)

Interestingly, this first-order approximation gives the correct result for the limiting case of
a frictionless material (Galin’s solution).

The coefficient A™ is calculated from eqn (40), after solving the non-linear system of
eqns (41). Note that a “first-order” approximation of 2 is (see Appendix B)

ie 1+(5L13my1m_m 43)
= K,+1
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The coefficient 4 is thus about 1, with the implication that R, the radius of the elastoplastic
interface for the reference hydrostatic case m = 0, represents the average radius of the
elastoplastic boundary in the nonhydrostatic case (m > 0).

5.3. Numerical results

The non-linear system of equations was solved numerically using Brown's algor-
ithm[11]. The computed coefficient m$), j = 1, n and 4 for various values of K are tabulated
in Table 1 for the case n = 5, m = 0.1. Some solutions corresponding to a friction angle of
30° (both active and passive modes), obtained with n =5, are illustrated in Fig. 3. As
already suggested by the first-order solution, eqn (42), the interface has an oval shape with
its great axis perpendicular to the major far-field compressive stress P° + S° in the active
mode (K = K,) but parallel to P° + S° in the passive mode (K = K,). The eccentricity of
the interface increases with the obliquity m.

Table 1. Coefficients of the mapping function (n = 5) for an obliquity
m=20.1

i 10m, 10*m, 10*m, 10%m, 10%m,,

0.9989 0.6686 —0.1125 0.5051 -0.2975 0.1997
0.9986 0.5025 —0.1269 0.6419 -04060 0.2868
0.9988 04024 -0.1220 0.6585 —04335 0.3147
0.9989 0.3356 —0.1131  0.6357 —04293 03174

b w N

1,2 10022 —1.3289  0.2221 0.4900 0.2027 0.1076
1/3 10037 -—14926 03731 0.6135 0.2275 0.1130
1/4  1.0048 —1.5905 04763 0.6237 0.2156 0.1027
1/5 10055 —1.6558 0.5503 0.5986 0.1970  0.0913

Fig. 3. Active (continuous line) and passive (dashed) solutions of the elastoplastic interface in the unit
plane 2, for a friction angle of 30°.
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5.4. Estimation of error

Continuity of the mean pressure across I' is automatically ensured if ¢,({) is calculated
from eqn (24). However, because of the approximate nature of the solution &™({), continuity
of the stress deviatoric across I' will in general be violated. The jump of the stress deviatoric
across the interface represents the error associated with the approximate solution.

Let the complex error £™(0) be defined as

E(n)(a):_: [M__;& + iTxy]/S?

where p and e indicate that the stress deviatoric is evaluated respectively on the plastic
and elastic side of I". The error £™(c) depends only on the parameters m and K. It can
readily be verified, by following Laurent’s decomposition for the second boundary condition,
eqn (16), that G*({) is intimately related to the jump of the stress deviatoric across I'.
Taking into account, eqns (38) and (39), we have

p

(44)

<

(o) = (f: G;,oz,) / @&™(0) (45)
Jj=n

The expression for the coefficients G; is derived in Appendix B. A global measure of the
error associated with the approximation of order n can be defined as

2 n/2
E_""(K,m)=; J |E*)(e*®)| d#. (46)

0

Table 2 illustrates the variation of E™(K,m) with respect to the number of terms n, for a
friction angle of 30°, and m = 0.1 and 0.3. An examination of this table suggests that the
optimum number of terms n to be used for the approximation &™({) is either 3 or 4.

Table 2. Variation of the error E with the number of terms
in the mapping function and the obliquity (friction angle of
30°)
Active mode (K = 3) Passive mode (K = 1/3)
Em=01) Em=03) Em=01) Em=03)

256 x 1073 239 x 1072 251 x 1073 244 x 1072
768 x 107° 381 x 1073 246 x 107* 1.04 x 1073
583 x 1073 997 x 107* 1.54 x 1073 561 x 10~*
497 x 10735 408 x 1073 1.69 x 10™% 4.19 x 10°3
503 x 107° 210 x 1074 1.69 x 10°% 550 x 10™3

bW -

6. DISCUSSION

The statical approach used to determine the position of the elastoplastic interface
rests upon three assumptions; namely (1) the hole is completely engulfed by the plastic
zone, (2) the problem is statically determinate and (3) no elastic unloading takes place
during development of the plastic zone. In the sequel, the limiting conditions for which
the constructed solution does not violate assumptions (1) and (2), and a loading path
conjectured to be consistent with assumption (3) are discussed.

6.1. Loading path

Providing the stress at infinity is characterized by an obliquity m less than 1/2, there
exists an interval (p,,, p.,) for the internal pressure p, for which the stress field calculated
according to the Kirsch elastic solution (e.g. Ref. [12]) does not violate the yield criterion (3).



1446 E. DETOURNAY

-~

N

\

N
N

Y
Ry
Py
N
&
I
x
3 N
)
>
b
I
x
£
2
£

N

Fig. 4. Elastic stress profile at the boundary.

The two elastic limits p,, and p,,(p., < p,) are given by the general formula

239( K-1 > g
= -+ —
=t A\ 2k TR S “n

where the upper sign and K = K, apply for the active elastic limit p,,, the lower sign and
b K = K, for the passive elastic limit Pep-

Figure 4 illustrates the elastic stress profile on the boundary r = g, at the two elastic
limits and at some pressure p within the elastic interval (p,,, p.,). There is impending failure
in the active mode for p = p,,, at the boundary points designated 1 in Fig. 4 (¢ = 0,7); in
the passive mode for p = p,, at points 2 (¢ = ~n/2,7/2).

Hence, starting from an elastic state corresponding to a stress t¥ at infinity
{characterized by an obliquity less than 1/2) and an internal pressure p in the interval
(Pea» Pep), @ monotonic increase of p beyond the elastic limit p,, will cause the propagation
around points 2 of yield zones in passive limit equilibrium. Similarly, a decrease of p
beyond the elastic limit p,,, will induce the formation of plastic regions in active limit
equilibrium around points 1. To be consistent with these Joading paths, the statical solution
of T should correspond to internal pressure p > p,, in the passive mode, but p < p,, in
the active one. Calculation of the internal pressure corresponding to the first admissible
configuration of the interface is carried out in the next article.

It is to be noted that a complete load history bringing the system from a uniform
stress t° in the plane to a stress-free boundary r = ¢ has an important application for the
analysis of excavation induced failure of rock around deep tunnels[13, 14].

6.2. Tangency of the interface to the hole

The first admissible configuration of the interface corresponds to I' being tangent to
the hole boundary. From the results of Section 5, the points of tangency are located at
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Z = tiain the active mode (K = K) and at Z = +a in the passive mode (K = K,). The
tangency condition can therefore be translated as

/IR°<1 + ‘f (11)fm2,.) =1 (48)
j=1

i=

In regard to the loading path discussed above, the tangency condition (48) is transformed
into an equation giving the minimum internal pressures p—at which the elastoplastic
boundary completely encloses the hole—as a function of S, m, g, and K. Using eqns (5),
(11) and (12), it can be deduced from eqn (48) that

p =+2—S?—1"'1<1+  (F 1ym, S (49)
S = 2 K, -1

The variation of p. and f,, where p is defined as

ﬁ=<p+K?_J/w (50)

with the obliquity m is tabulated in Table 3 for a friction angle of 30° (both passive and

active modes). It is apparent from this table that indeed p,, < p., and p;, > p,,. Furthermore,
since R, decreases monotonically with p if K = K, but increases with p if K = K,, the
statical solution is applicable for p < p, in the active mode but p > p, in the passive mode.

Table 3. Variation of g, and §, with the
obliquity m for both modes of failure
{friction angle of 30°)

Active mode Passive mode
(K=3) (K =1/3)
m b. b b. b

00 1000 1000 3000 3.000
0.1 1.100 0.897 2700 3.323
02 1200 0787 2400 3.695
03 1300 0667 2100 4.118

Since the shape of I is independent of p, the interface propagates outwards in a self-
similar manner as p increases monotonically beyond p,,, or decreases from p,,. This self-
similarity property implies that the statical solution is consistent with the assumption of
no elastic unloading for the particular load path discussed above (provided that the first
admissible configuration is indeed reached).

6.3. Tangency to a stress characteristic

The elastoplastic interface is statically determinate if any point on I" can be connected
to the boundary r = a, by two stress characteristics (or slip line) lying entirely within the
plastic region. At the limit of statical determinacy, the interface becomes tangent to a stress
characteristic (see Fig. 5). In this particular problem, the slip lines consist of logarithmic
spirals inclined about the radial direction by an angle o’ equal to (n/4 + ®/2) in the active
mode, and to (n/4 — ®/2) in the passive mode. Hence, if the interface is tangent to a stress
characteristic, the angle « — ¢ at the point of tangency (where a is the angle between the
outward normal to the interface and the x-axis and ¢ is the cylindrical coordinate angle)
is given by

e —¢l=3—d. (51
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Fig. 5. Limit of statical determinacy for active (left) and passive (right) mode of failure (friction angle
of 30°).

The condition of tangency between the interface and one of the stress characteristics
is controlled solely by the two parameters m and K; indeed, the shape of the slip line
depends on K only, the shape of I' on m and K. The limiting condition regarding statical
determinacy of the problem may therefore be translated as a limiting value m.(K) of the
obliquity m, the problem being statically determinate if

0 < m < m(K). (52)

The maximum obliquity m.(K) is computed by requiring that o — ¢ = +n/4 — ®/2 at the
point on the interface at which o — ¢ is extremum. 1 hese two conditions translate as

2 O'(0.) dX(o4) — 4igi®
eI ) T 9
@"(o4) o'(a4) _
1 + Re [0’.25,(—0_3 - 0’.&;‘—)‘] = (. (54)

Equations (53) and (54) constitute a system of equations, parametric in K, to be solved
for m. and o.. Here o. is the image in the reference plane of the point on I" at which « — ¢
is extremum.

The system of eqns (41), with the obliquity m treated as the unknown m., was solved
simultaneously with eqns (53) and (54) for the (n + 2) unknowns m$), j = 1,n, m., and o.,
for various friction angles in the active and passive modes. The results of this investigation
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are summarized in Table 4, where the limiting obliquity m. is given as a function of the
friction angle for both modes of failure (case n = 3).

For a frictionless material, m. = 2}/2 — | (both modes); this value is obtained by
solving analytically the system of eqns (53) and (54), using the closed-form solution, eqn
(35);. Note that both Hill[6] and Savin[2] quote a limiting value
m. = (22 — 1)/(2"/2 + 1) for the case K = 1. This value, which is stated without any
supporting analysis, is incorrect.

Table 4. Limiting obliquity m. (n = 3)

Friction angle ® m. (active) m. (passive)

10° 04197 0.4047
20° 0.4195 0.3955
30° 0.4200 0.3879
40° 0.4263 0.3819
50° 0.4410 0.3773

7. CONCLUSIONS

An approximate statical solution of the elastoplastic interface has been derived for
the problem of Galin with a cohesive-frictional material, for configurations where the hole
is completely engulfed by a plastic zone. Like in Galin’s solution, the location of the
elastoplastic interface is solved as a problem of conformal mapping (by making use of the
Kolossov—Muskhelishvili functions), based on the assumptions that (1) the interface is
statically determinate and (2) the plastic region has developed without any elastic unloading.

The method of solution presented in this paper leads to the formulation of a scalar
condition and a functional equation for determination of the mapping function. Although
the functional equation can be solved in closed form for a Tresca material (Galin’s solution),
it has to be solved approximately in the general case of a Mohr—-Coulomb material, by
seeking a solution to the mapping function in the form of a truncated series expansion.
The coefficients of the truncated series expansion are shown to be the roots of a non-linear
system of algebraic equations.

Calculation indicates that the elastoplastic interface has an oval shape with its major
axis oriented parallel or perpendicular to the greatest compressive stress at infinity
depending on whether the stress in the plastic zone is in passive or active limit equilibrium.
The shape of the elastoplastic boundary is solely controlled by the obliquity m of the stress
at infinity and by the friction angle of the material. The average size of the plastic zone
was also shown to be given by the hydrostatic solution.

Requirements for consistency of the solution were discussed. It has been proven that
a statical solution of I" can be constructed provided that the obliquity is less than a critical
value m., function of the friction angle and the mode of limit equilibrium (passive or active).
The assumption of no elastic unloading was examined in conjunction with a particular
loading path, where the magnitude of the internal pressure is monotonically varied. For
this particular load path, it was shown that a continuous growth of the plastic region is
predicted.

An important application of this solution is in the assessment of the extent of failed
rock around a deep tunnel subject to a non-hydrostatic in situ stress and in the evaluation
of the excavation-induced closure of the tunnelf13, 14].
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APPENDIX A
A SUFFICIENT CONDITION FOR THE INTERMEDIACY OF THE OUT-OF-PLANE
STRESS

It is proven that

1

v?m (A1)

represents a sufficient condition for t,, to be the strict intermediate principal stress 1, in regions of plastic flow,
provided that the stress at infinity satisfies the plane strain condition

10 = W1, + 15) (A2)

The proof relies on the existence of a potential function H for the plastic strain increment def}

oH
def, = Mo M2 0 (A3)

and on the assumption that H is a function of stress of the same form as the yield function. In terms of the major
and minor principal stresses 1,, 75, the expression for H is then

H=Kt,—-1,-¢* (Ad)

where K} is the dilatancy factor (I < K3 < K} and ¢* is an arbitrary constant. It follows from eqns (A3) and
(A4) that the condition for the plane criterion (3) to be equivalent to the general Mohr-Coulomb criterion (1)
(i.e. 1,, 15 in the plane of deformation) is, in effect, identical to the condition of plastic flow in the plane of
deformation (de?, = 0).

If at any point where the yield criterion F = 0 is satisfied, the out-of-plane stress 1,, has been the strict
intermediate principal stress t, since the onset of plastic deformation, the plane strain condition ¢,, = 0 is
equivalent to

g =¢,=0 (A5)
and, therefore
T2 = V(T_“ + ryy) (AG)

everywhere in the plane of deformation. It can readily be proven that t,,, calculated from eqn (A6), is the
intermediate principal stress t, (strict) if

S2(1-2vpP, Pz0. (A7)
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Hence, providing that (Fig. Al)

Kp-1
(1 -2V <sin® =_2 (A8)
K, +1

1,, = 7, when § = S, and P > 0. (For cohesionless material, inequality (A8) must be strict.) It can also be verified
that the yield condition F = 0 is never reached for 0 < S £ (1 — 2v)P, provided that inequality (A8) is met. Hence,
incquality (A1) or (A8) represents a sufficient condition for S = §, to be equivalent to F = 0.

sé

Fig. Al. Graphical representation of the conditions for which 1,, is the intermediate principal stress ;.

APPENDIX B
EQUATIONS FOR THE COEFFICIENTS OF THE MAPPING FUNCTION

In this appendix, the superscript (n)—used to denote reference to the approximation of order n of the mapping
function—is dropped for simplicity of notation.

Expression for the coefficient 4

The expression of 4 in terms of the coefficients m,;, j = 1,n is deduced from constraint (26), which imposes
that the zero-order coefficient of the Laurent series expansion of #X~'({) be equal to 1. The Laurent series
expansion of 7~ !({) needs first 1o be derived. For that purpose, the function £~ !({) is rewritten as

K10 = AX 1SS (B1)
where
S(()=%c—)= 1+ 3 myg~¥ (B2)
j=1
K= (Kz‘ b (B3)

Let po(<1) be the largest of the moduli of the zeros of iX{). Because of the symmetry properties, eqns (8), of the
mapping function, S({) transforms the infinite region Ly (p > p,) onto a finite domain D which lies on the right
of the imaginary axis Re[S({)] = 0. The function $*({) is therefore single-valued for {€Zg, if the negative real
axis of the complex plane S({) is selected as branch cut. The Laurent series expansion about { = 0 of $*({) in
Z, is then given by

S0 =Y cf ¥ {eZ;. (B4)
i=0
The coefficients c,;, which are real, are calculated using the recursive formula of Miller[15]

=1

L
cy = Zl [k + D = jJeay-ymay  j=1 (BS)

1
Jji

with

L={J? j=1n

n; j=noo
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Note that if x is a positive integer, the cocllicients ¢, arc identically zero for j > nk.
The Taylor expansion about { = 0 of the associated function 5%({ ') is immediately deduced from eqn (B4)

SEN=3 a8 (eks. (B6)
j=0

The Cauchy product of the two series (B4) and (B6) converges absolutely and uniformly to [A({)/4}* "} in the
ring Q, (py < p <py')

PNy = 2K II;Z dyl¥+do+ 3 ‘121{_1’} {eQ (B7)
j=1 i=1
where
dyj= ) CuCapspp  j=0,00. (B3)
k=0

In light of cqn (B7), the function d({) resulting from the Laurent decomposition (20) of £~ () rcads
dO) =K1Y dy (7Y, ({eX,; (BY)
j=1

and constraint (26} becomes
A=dinTr, (B10)

The above equation gives A in terms of the coefficients m,;, j = 1,n of the mapping function.

Systems of equations for my;, j =1, n

The equations needed to calculate the coefficients m,;, j = 1, n are determined by imposing the vanishing
of the n first coefficients of Taylor expansion (38) of G*({). According to eqn (32),, the function G*({) is defined
in terms of the analytic functions g,({) and h,({) resulting from the Laurent decomposition of g{{) and h({). In
the sequel, the Taylor series of g,({) and h,({) is directly deduced from the Laurent series expansion of g{({) and
().

First, consider the function g({) defined in eqn (28). The Laurent series expansion of g({) is calculated by
Cauchy product of the series representation of &~ ') and d'({). Since

M“)=AC"<1 +y m,,c21> (B!I1)
Jj=1
40 = ik ¥ 2jdy i (B12)
j=1
we have that

n-2 o
#0) = Ky + lﬂ.x T gl + K, + 1/1" Y gl {eQq. (B13)

K,—1" 5 K,—1" &

The first series in eqn (B13) identifies g,({), the second g,({). Hence

Ko+1 ,°32 ;
g == ¥ 18 (B14)
[ i=0
where
a-j=1
g2 = t 2kdyumygs oy j=0,n-2 (B15)
=1

(Note that g,({)=0ifn=1)
Consider next the function h({), defined in eqn (30). K{) can advantageously be rewritten in terms of S({),
defined in eqn (B2), and its associated function ${{ ")

Q) = 2K 72 QSIE ™ )Y x e RS 2 (B16)

The Taylor series of [§({~")}** "2 about { =0 is

)

Sz = ¥ ef¥, (eXg (B17)

j=0
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and the Laurcent series expansion of [S{{}]* 32 with respect to { =0 is
ar
[SOM2 =% 8™ (ek;. (B18)
j=o

The real coefficients c3; and c3; are calculated by means of the recursive formula (B5) with x replaced by (K + 1)/2
and by (K — 3)/2, respectively, The Cauchy product of the two series (B17) and {B18) converges for {eQ,

[S'(C— I)](Kfl)/![sﬁ)]ﬂ(*!)lz = i e}){li (819)

i=-m

with
&«
, " .
€y = Z Crgrnlae  f=0,

ey Z CuChyeny  J=1,00. (B20)

k=0

The Laurent expansion of h({) is then obtained by Cauchy product of eqn (B19) with the polynomial &({)
{~* Partial summation of the terms with zero and positive powers of { in that series identifies the function h,{{)
{samc procedure as for g,{{). All calculations donc

hy(Q) =A% 3 hy LY (B21)
J¥o
with
hyj = exjany — ‘Z (2k — Dmyezns e 11 (B22)
=1

It follows from the definition of eqn (32}, of G*{{) and from eqns (B14) and (B21) that the coefficients G;
of the Taylor expansion (38) of G*{({} are

ifn>2
K+1, ,
G§ = i)“K—lg"i)‘xh"_
K+1, , .
Giy= £ A a3 + Athy, =lLn-2
Gii= £ 4%y, j=n-1lwo (B23)
ifn=1o0r2
Gs = xR 1er 4 akhy -
K-1
G;Ig )'xh'zj, ji=l®
(go = 0ifn=1). (B23)

The n equations needed for the determination of the coefficients my;, j = 1,n are obtained by imposing the
vanishing of G3;, j = 0, n — 1. After dividing G, by A* and making use of eqn (B10), we have

ifn>2
K+1
+Igo*k0;m‘io—0
K+1, .
= 1g;,+h;, 0, Jj=Ln-2
hyp-1y =0 (B24)
ifn=2
K+1, ;-
K._lgo+ho+mdn.=0
hy=0 (B24)
ifne=1 $mdo=0- (324”)

Equations (B24) constitute a system of n non-linear equations in the cocflicients my;, j = 1,n of the mapping
function (4 is absent from eqns (B24)).
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First-order approximation of interface
An approximate explicit solution of the interface can be found by linearizing eqn (B24"). Using eqns (B22).
eqn (B24") becomes

€, —mye, ¥ mdy = 0. (B25)

A first-order estimate of the coefficient m, can then be obtained by expressing e,, ¢,, and d, in terms of m, with
the help of eqns (B8) and (B20), and linearizing the resulting equation in m,

my, = :tK_é-——lm (B26)

An approximate expression of the coefficient 4 can also be determined from eqn (B10), using

doz14ci=1 +£§‘—’mz. (B27)

Hence

- 2 11/(1 - K)
Az [1 + (%—Sm)] . (B28)



